Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
3.
Clin Immunol ; 231: 108828, 2021 10.
Article in English | MEDLINE | ID: covidwho-1363931

ABSTRACT

COVID-19 is characterized by a dysregulation of inflammatory cytokines ultimately resulting a cytokine storm that can result in significant morbidity and mortality. We developed an in-vitro assay using activated peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS) or CD3 + CD28 to examine secretion of cytokines from antigen presenting cells (APCs) and T cells, respectively, in donor patients with a history of COVID-19 (convalescent) and uninfected negative controls. We hypothesized that a novel antioxidant called Tempol may decrease cytokines from activated peripheral blood cells from both COVID-19 patients and normal donors. Preincubation of immune cells with Tempol resulted in a significant (P < 0.05) decrease in multiple T cell and APC-derived cytokines from both cells of COVID-19 (n = 7) and uninfected donors (n = 7). These preliminary results suggest that Tempol has strong in-vitro anti-cytokine activity and supports additional studies examining the use of Tempol for the treatment of COVID-19.


Subject(s)
Antioxidants/pharmacology , COVID-19/immunology , Cyclic N-Oxides/pharmacology , Lymphocyte Activation/drug effects , SARS-CoV-2 , T-Lymphocytes/drug effects , Adult , Aged , Antigen-Presenting Cells/metabolism , Antigens, Viral/metabolism , Cytokines/antagonists & inhibitors , Cytokines/drug effects , Female , Humans , Male , Middle Aged , Spin Labels , T-Lymphocytes/physiology
5.
Genes (Basel) ; 12(5)2021 04 24.
Article in English | MEDLINE | ID: covidwho-1201763

ABSTRACT

Single-cell RNA sequencing of the bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients has enabled us to examine gene expression changes of human tissue in response to the SARS-CoV-2 virus infection. However, the underlying mechanisms of COVID-19 pathogenesis at single-cell resolution, its transcriptional drivers, and dynamics require further investigation. In this study, we applied machine learning algorithms to infer the trajectories of cellular changes and identify their transcriptional programs. Our study generated cellular trajectories that show the COVID-19 pathogenesis of healthy-to-moderate and healthy-to-severe on macrophages and T cells, and we observed more diverse trajectories in macrophages compared to T cells. Furthermore, our deep-learning algorithm DrivAER identified several pathways (e.g., xenobiotic pathway and complement pathway) and transcription factors (e.g., MITF and GATA3) that could be potential drivers of the transcriptomic changes for COVID-19 pathogenesis and the markers of the COVID-19 severity. Moreover, macrophages-related functions corresponded more to the disease severity compared to T cells-related functions. Our findings more proficiently dissected the transcriptomic changes leading to the severity of a COVID-19 infection.


Subject(s)
Bronchoalveolar Lavage Fluid/virology , COVID-19/etiology , COVID-19/pathology , Macrophages , T-Lymphocytes , Algorithms , COVID-19/genetics , Computational Biology/methods , Gene Expression Profiling , Humans , Machine Learning , Macrophages/physiology , Macrophages/virology , Sequence Analysis, RNA/methods , Single-Cell Analysis , T-Lymphocytes/physiology , T-Lymphocytes/virology
6.
Thorax ; 76(10): 1010-1019, 2021 10.
Article in English | MEDLINE | ID: covidwho-1180971

ABSTRACT

BACKGROUND: Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. METHODS: This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. FINDINGS: Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. INTERPRETATION: The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.


Subject(s)
COVID-19/immunology , Immunity, Cellular/physiology , Inflammation Mediators/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , COVID-19/blood , COVID-19/pathology , Critical Care , Critical Illness , Female , Flow Cytometry , Humans , Macrophages/physiology , Male , Middle Aged , T-Lymphocytes/physiology
7.
Science ; 372(6537)2021 04 02.
Article in English | MEDLINE | ID: covidwho-1166346

ABSTRACT

Multivalent display of receptor-engaging antibodies or ligands can enhance their activity. Instead of achieving multivalency by attachment to preexisting scaffolds, here we unite form and function by the computational design of nanocages in which one structural component is an antibody or Fc-ligand fusion and the second is a designed antibody-binding homo-oligomer that drives nanocage assembly. Structures of eight nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage, respectively, closely match the corresponding computational models. Antibody nanocages targeting cell surface receptors enhance signaling compared with free antibodies or Fc-fusions in death receptor 5 (DR5)-mediated apoptosis, angiopoietin-1 receptor (Tie2)-mediated angiogenesis, CD40 activation, and T cell proliferation. Nanocage assembly also increases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-angiotensin-converting enzyme 2 (ACE2) fusion proteins.


Subject(s)
Antibodies/chemistry , Antibodies/immunology , Nanostructures , Protein Engineering , Signal Transduction , Angiopoietins/chemistry , Angiopoietins/immunology , Angiopoietins/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , B-Lymphocytes/immunology , CD40 Antigens/chemistry , CD40 Antigens/immunology , CD40 Antigens/metabolism , Cell Line, Tumor , Cell Proliferation , Computer Simulation , Genes, Synthetic , Humans , Immunoglobulin Fc Fragments/chemistry , Lymphocyte Activation , Models, Molecular , Protein Binding , Receptor, TIE-2/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/physiology
8.
J R Soc Interface ; 18(176): 20200982, 2021 03.
Article in English | MEDLINE | ID: covidwho-1138038

ABSTRACT

Here, we report that COVID-19 hospitalization rates follow an exponential relationship with age, doubling for every 16 years of age or equivalently increasing by 4.5% per year of life (R2 = 0.98). This mirrors the well-studied exponential decline of both thymus volume and T-cell production, which halve every 16 years. COVID-19 can therefore be added to the list of other diseases with this property, including those caused by methicillin-resistant Staphylococcus aureus, MERS-CoV, West Nile virus, Streptococcus pneumoniae and certain cancers, such as chronic myeloid leukaemia and brain cancers. In addition, the incidence of severe disease and mortality due to COVID-19 are both higher in men, consistent with the degree to which thymic involution (and the decrease in T-cell production with age) is more severe in men compared to women. Since these properties are shared with some non-contagious diseases, we hypothesized that the age dependence does not come from social-mixing patterns, i.e. that the probability of hospitalization given infection rises exponentially, doubling every 16 years. A Bayesian analysis of daily hospitalizations, incorporating contact matrices, found that this relationship holds for every age group except for the under 20s. While older adults have fewer contacts than young adults, our analysis suggests that there is an approximate cancellation between the effects of fewer contacts for the elderly and higher infectiousness due to a higher probability of developing severe disease. Our model fitting suggests under 20s have 49-75% additional immune protection beyond that predicted by strong thymus function alone, consistent with increased juvenile cross-immunity from other viruses. We found no evidence for differences between age groups in susceptibility to infection or infectiousness to others (given disease state), i.e. the only important factor in the age dependence of hospitalization rates is the probability of hospitalization given infection. These findings suggest the existence of a T-cell exhaustion threshold, proportional to thymic output and that clonal expansion of peripheral T-cells does not affect disease risk. The strikingly simple inverse relationship between risk and thymic T-cell output adds to the evidence that thymic involution is an important factor in the decline of the immune system with age and may also be an important clue in understanding disease progression, not just for COVID-19 but other diseases as well.


Subject(s)
Aging/immunology , COVID-19/pathology , Hospitalization/statistics & numerical data , SARS-CoV-2 , T-Lymphocytes/physiology , Thymus Gland/cytology , Adolescent , Adult , Aged , Aged, 80 and over , Aging/pathology , Bayes Theorem , Child , Female , Humans , Male , Middle Aged , Risk Factors , Young Adult
9.
N Engl J Med ; 384(20): 1885-1898, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1135713

ABSTRACT

BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5×1010 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, -76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT04444674; Pan African Clinical Trials Registry number, PACTR202006922165132).


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2 , Adenoviridae , Adolescent , Adult , Antibodies, Neutralizing/physiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Double-Blind Method , Humans , Middle Aged , South Africa , T-Lymphocytes/physiology , Treatment Failure , Vaccine Potency , Young Adult
10.
Clin Immunol ; 222: 108642, 2021 01.
Article in English | MEDLINE | ID: covidwho-1064948

ABSTRACT

BACKGROUND: Abnormal peripheral immunological features are associated with the progression of coronavirus disease 2019 (COVID-19). METHODS: Clinical and laboratory data were retrieved in a cohort of 146 laboratory-confirmed COVID-19 patients. Potential risk factors for the development of severe COVID-19 were evaluated. RESULTS: On admission, lymphocytes, CD3+, CD4+ and CD8+ T cells, eosinophils, and albumin and pre-albumin were dramatically lower, whereas neutrophils, and interleukin (IL)-10, C-reactive protein (CRP), aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT) were significantly higher in severe cases. By the second week after discharge, all variables improved to normal levels. Covariate logistic regression results showed that the CD8+ cell count and CRP level were independent risk factors for severe COVID-19. CONCLUSION: Lower peripheral immune cell subsets in patients with severe disease recovered to normal levels as early as the second week after discharge. CD8+ T cell counts and CRP levels on admission are independent predictive factors for severe COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Cytokines/metabolism , SARS-CoV-2 , T-Lymphocytes/classification , T-Lymphocytes/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , China/epidemiology , Cytokines/genetics , Eosinophils , Female , Gene Expression Regulation/immunology , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Serum Albumin , Severity of Illness Index , Young Adult
11.
Bull Exp Biol Med ; 170(1): 118-122, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-959313

ABSTRACT

Thymalin is a polypeptide complex isolated from the thymus and regulating the functions of the immune system. Thymalin is effective in therapy of acute respiratory syndrome, chronic obstructive bronchitis, and other immunopathology. Thymalin increases functional activity of T lymphocytes, but the targeted molecular mechanism of its biological activity requires further study. We studied the influence of thymalin on differentiation of human hematopoietic stem cells (HSC) and expression of CD28 molecule involved in the implementation of antiviral immunity in COVID-19 infection. It was found that thymalin reduced the expression of CD44 (stem cell marker) and CD117 (molecule of the intermediate stage of HSC differentiation) by 2-3 times and increased the expression of CD28 (marker of mature T lymphocytes) by 6.8 times. This indirectly indicates that thymalin stimulated differentiation of CD117+ cells into mature CD28+T lymphocytes. It is known that in patients with severe COVID-19, the number of CD28+, CD4+, CD8+T lymphocytes in the blood decreased, which attested to a pronounced suppression of immunity. It is possible that the antiviral effect of thymalin consists in compensatory stimulation of HSC differentiation into CD28+T lymphocytes at the stage of immunity suppression in unfavorable course of viral infection. Thymalin can be considered as an immunoprotective peptide drug for the prevention of COVID-19.


Subject(s)
Cell Differentiation/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/physiology , Thymus Hormones/pharmacology , CD28 Antigens/genetics , CD28 Antigens/metabolism , COVID-19/immunology , COVID-19/pathology , Cell Differentiation/genetics , Cells, Cultured , Fetal Blood/cytology , Gene Expression Regulation/drug effects , Hematopoietic Stem Cells/pathology , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/physiology , Thymus Hormones/physiology
12.
Emerg Infect Dis ; 27(1)2021 01.
Article in English | MEDLINE | ID: covidwho-954408

ABSTRACT

We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies and T-cell responses against SARS-CoV-2 and human coronavirus (HCoV) 229E and OC43 in 11 SARS-CoV-2 serodiscordant couples in Strausbourg, France, in which 1 partner had evidence of mild coronavirus disease (COVID-19) and in 10 unexposed healthy controls. Patients with confirmed COVID-19 were considered index patients and their partners close contacts. All index patients displayed positive SARS-CoV-2-specific antibody and T-cell responses that lasted up to 102 days after symptom onset. All contacts remained seronegative for SARS-CoV-2; however, 6 reported COVID-19 symptoms within a median of 7 days after their partners, and 4 of those showed a positive SARS-CoV-2-specific T-cell response against 3 or 4 SARS-CoV-2 antigens that lasted up to 93 days after symptom onset. The 11 couples and controls displayed positive T-cell responses against HCoV-229E or HCoV-OC43. These data suggest that exposure to SARS-CoV-2 can induce virus-specific T-cell responses without seroconversion.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/transmission , Family , SARS-CoV-2/immunology , T-Lymphocytes/physiology , Adult , Aged , COVID-19/blood , COVID-19 Testing , Case-Control Studies , Female , France/epidemiology , Humans , Immunity, Cellular , Male , Middle Aged , Seroconversion , Serologic Tests
13.
Int J Infect Dis ; 102: 163-169, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-893933

ABSTRACT

OBJECTIVES: The aim was to investigate if there is synergy in HIV infection and COVID-19 in their influence on human immunity, if there is an exacerbation of HIV patients' immune status caused by SARS-CoV-2; and if HIV infection without antiretroviral therapy (ART) leads to a more serious COVID-19 course than HIV infection with ART. DESIGN: Anonymised blood samples and clinical data were collected in 47 hospitals, clinics and medical centres in six Russian cities/regions in the period from 20 March to 15 June 2020. Three hundred and seventy-six HIV/COVID-19 patients were studied (171 without ART and 205 with ART). The control group consisted of 382 SARS-CoV-2-positive patients without HIV infection. Lymphocyte and cytokine amounts were measured by flow cytometry and ELISA. This work is a retrospective study. RESULTS: COVID-19 led to rapid augmentation of the process of T-cell exhaustion initially caused by HIV, and this T cell degradation was most pronounced in patients without ART. A rise in IL-10 and TGFß serum concentrations was observed. Diminishing CD4+/CD8+ cell and Th1/Th2 cell ratios characteristic for HIV progression were accompanied by a surge in exhausted T cell count with simultaneous exacerbation of COVID-19-related respiratory distress. CONCLUSIONS: HIV infection without ART may be a very serious comorbidity of COVID-19, whereas immunity of HIV/COVID-19 patients with proper ART is not generally affected by SARS-CoV-2. HIV-1 and SARS-CoV-2 are likely to exhibit a synergic effect, and exhausted T lymphocyte dynamics may be its effective marker.


Subject(s)
COVID-19/immunology , Coinfection/immunology , Cytokines/blood , HIV Infections/immunology , SARS-CoV-2 , T-Lymphocytes/immunology , Adolescent , Adult , Aged , HIV Infections/drug therapy , Humans , Middle Aged , Retrospective Studies , T-Lymphocytes/physiology , Young Adult
14.
Emerg Infect Dis ; 27(1)2021 01.
Article in English | MEDLINE | ID: covidwho-874430

ABSTRACT

We investigated immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among a group of convalescent, potential blood donors in Germany who had PCR-confirmed SARS-CoV-2 infection. Sixty days after onset of symptoms, 13/78 (17%) study participants had borderline or negative results to an ELISA detecting IgG against the S1 protein of SARS-CoV-2. We analyzed participants with PCR-confirmed infection who had strong antibody responses (ratio >3) as positive controls and participants without symptoms of SARS-CoV-2 infection and without household contact with infected patients as negative controls. Using interferon-γ ELISpot, we observed that 78% of PCR-positive volunteers with undetectable antibodies showed T cell immunity against SARS-CoV-2. We observed a similar frequency (80%) of T-cell immunity in convalescent donors with strong antibody responses but did not detect immunity in negative controls. We concluded that, in convalescent patients with undetectable SARS-CoV-2 IgG, immunity may be mediated through T cells.


Subject(s)
Antibody Specificity , COVID-19/immunology , Immunity, Cellular/physiology , Immunoglobulin G/blood , SARS-CoV-2 , T-Lymphocytes/physiology , Adult , Antibodies, Viral/blood , Blood Donors , COVID-19/virology , Enzyme-Linked Immunospot Assay/methods , Female , Humans , Interferon-gamma , Male , Middle Aged , Polymerase Chain Reaction
15.
Front Med ; 14(6): 746-751, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-813358

ABSTRACT

The ongoing pandemic of Coronavirus disease 19 (COVID-19) is caused by a newly discovered ß Coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). How long the adaptive immunity triggered by SARS-CoV-2 can last is of critical clinical relevance in assessing the probability of second infection and efficacy of vaccination. Here we examined, using ELISA, the IgG antibodies in serum specimens collected from 17 COVID-19 patients at 6-7 months after diagnosis and the results were compared to those from cases investigated 2 weeks to 2 months post-infection. All samples were positive for IgGs against the S- and N-proteins of SARS-CoV-2. Notably, 14 samples available at 6-7 months post-infection all showed significant neutralizing activities in a pseudovirus assay, with no difference in blocking the cell-entry of the 614D and 614G variants of SARS-CoV-2. Furthermore, in 10 blood samples from cases at 6-7 months post-infection used for memory T-cell tests, we found that interferon γ-producing CD4+ and CD8+ cells were increased upon SARS-CoV-2 antigen stimulation. Together, these results indicate that durable anti-SARS-CoV-2 immunity is common in convalescent population, and vaccines developed from 614D variant may offer protection from the currently predominant 614D variant of SARS-CoV-2.


Subject(s)
Adaptive Immunity/physiology , Antibodies, Neutralizing/blood , COVID-19/immunology , Immunoglobulin G/blood , SARS-CoV-2/immunology , T-Lymphocytes/physiology , Adult , Aged , COVID-19/blood , COVID-19/diagnosis , Cohort Studies , Female , Humans , Male , Middle Aged , Time Factors , Viral Proteins/immunology
16.
N Engl J Med ; 383(25): 2427-2438, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-811499

ABSTRACT

BACKGROUND: Testing of vaccine candidates to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in an older population is important, since increased incidences of illness and death from coronavirus disease 2019 (Covid-19) have been associated with an older age. METHODS: We conducted a phase 1, dose-escalation, open-label trial of a messenger RNA vaccine, mRNA-1273, which encodes the stabilized prefusion SARS-CoV-2 spike protein (S-2P) in healthy adults. The trial was expanded to include 40 older adults, who were stratified according to age (56 to 70 years or ≥71 years). All the participants were assigned sequentially to receive two doses of either 25 µg or 100 µg of vaccine administered 28 days apart. RESULTS: Solicited adverse events were predominantly mild or moderate in severity and most frequently included fatigue, chills, headache, myalgia, and pain at the injection site. Such adverse events were dose-dependent and were more common after the second immunization. Binding-antibody responses increased rapidly after the first immunization. By day 57, among the participants who received the 25-µg dose, the anti-S-2P geometric mean titer (GMT) was 323,945 among those between the ages of 56 and 70 years and 1,128,391 among those who were 71 years of age or older; among the participants who received the 100-µg dose, the GMT in the two age subgroups was 1,183,066 and 3,638,522, respectively. After the second immunization, serum neutralizing activity was detected in all the participants by multiple methods. Binding- and neutralizing-antibody responses appeared to be similar to those previously reported among vaccine recipients between the ages of 18 and 55 years and were above the median of a panel of controls who had donated convalescent serum. The vaccine elicited a strong CD4 cytokine response involving type 1 helper T cells. CONCLUSIONS: In this small study involving older adults, adverse events associated with the mRNA-1273 vaccine were mainly mild or moderate. The 100-µg dose induced higher binding- and neutralizing-antibody titers than the 25-µg dose, which supports the use of the 100-µg dose in a phase 3 vaccine trial. (Funded by the National Institute of Allergy and Infectious Diseases and others; mRNA-1273 Study ClinicalTrials.gov number, NCT04283461.).


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Neutralization Tests , Spike Glycoprotein, Coronavirus , T-Lymphocytes/physiology
17.
Med Hypotheses ; 143: 109893, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-436988

ABSTRACT

Recently, a mini-review was published in the Medical Hypotheses journal by Usul Afsar entitled 2019-nCoV-SARS-CoV-2 (COVID-19) infection: Cruciality of Furin and relevance with cancer. Previous studies have pointed out that disruption of the proteolytic cleavage of proteins can promote infectious and non-infectious diseases. The last few weeks have been marked by an important revelation concerning the pathophysiology of SARS-CoV-2. This new coronavirus disease (COVID-19) is a highly contagious and transmissible acute respiratory infectious disorder. SARS-CoV-2 is composed of RNA-dependent RNA polymerase and structural proteins including Spike protein (S protein). Interestingly, the FURIN, one of the proproteins of the convertase family, plays a crucial role in the maturation of viral glycoproteins. In addition, many viruses including coronaviruses, exploit FURIN for the activation of their glycoproteins. Recent data indicate that SARS-CoV-2 enters human cells by binding to angiotensin-converting enzyme 2. Subsequently, the S protein is cleaved by transmembrane protease serine 2 with the help of FURIN which facilitates the entry of the virus into the cell after binding. Furthermore, it seems that FURIN is implicated in the pathogenesis of SARS-CoV-2 and potentially in the increased rates of human-to-human transmission.


Subject(s)
Betacoronavirus , Coronavirus Infections/enzymology , Coronavirus Infections/etiology , Furin/physiology , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/enzymology , Pneumonia, Viral/etiology , Spike Glycoprotein, Coronavirus/physiology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/immunology , Furin/genetics , Host Microbial Interactions/physiology , Humans , Immune Tolerance , Immunity, Cellular , Pandemics , Pneumonia, Viral/immunology , Receptors, Virus/physiology , SARS-CoV-2 , T-Lymphocytes/immunology , T-Lymphocytes/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL